Многокадровый оптический поток на основе траекторий

Михаил Синдеев^{1,2}, Антон Конушин², Карстен Ротер³

¹ Институт прикладной математики им. М.В. Келдыша РАН, Москва, Россия

² Факультет вычислительной математики и кибернетики, МГУ имени М.В. Ломоносова, Москва, Россия

³Microsoft Research Cambridge

{msindeev, ktosh}@graphics.cs.msu.ru, carrot@microsoft.com

Аннотация

В этой статье предлагается новый алгоритм вычисления оптического потока, использующего соседние кадры в качестве вспомогательных для точного анализа перекрытий. Это позволяет оценить движение в областях, которые видимы лишь в одном из двух последовательных кадров. Кроме того, может быть смоделировано нелинейное движение пикселов между двумя кадрами для более точной генерации промежуточных кадров в задаче интерполяции.

Ключевые слова: оптический поток, траектории, перекрытия, карта видимости.

1. ВВЕДЕНИЕ

Пусть требуется построить карту соответствия между двумя изображениями, являющимися соседними кадрами видеопоследовательности *I*₀ и *I*₁. С учетом погрешностей регистрации изображений (шум ССD-матрицы, перекрытия, артефакты дискретизации), соответствие между изображениями можно записать как

$$I_0(x, y) \approx I_1(x + V_x(x, y), y + V_y(x, y)),$$
 (1)

где V_x , V_y – вертикальная и горизонтальная компоненты видимого движения пикселов между кадрами, называемого оптическим потоком V. Для нецелых значений сдвига используется билинейная интерполяция. Поскольку для каждого пиксела (x, y) изображения I_0 можно найти много пикселов в изображении I_1 с совпадающим или близким цветом, решение для V не единственно. Поэтому задачу нахождения оптического потока обычно формулируют как минимизацию функционала, состоящего из члена данных E_D и члена гладкости E_S , умноженного на коэффициент регуляризации $\lambda > 0$ (см. [4]).

$$E(V) = E_D(V) + \lambda E_S(V), \qquad (2)$$

$$E_D(V) = \iint (I_0(x, y) - I_1(x + V_x, y + V_y))^2 dxdy$$
(3)

$$E_{s}(V) = \iint \left\| \nabla V_{x} \right\|^{2} + \left\| \nabla V_{y} \right\|^{2} dx dy, \qquad (4)$$

$$V = \underset{V}{\arg\min} E(V) \tag{5}$$

Возможны и другие способы регуляризации, использующие неквадратичные нормы для данных слагаемых [10], например:

$$E_{D}(V) = \iint \psi (I_{0}(x, y) - I_{1}(x + V_{x}, y + V_{y})) dx dy$$
 (6)

$$E_{s}(V) = \iint \psi(\nabla V) dx dy, \qquad (7)$$

$$\psi(z) = \sqrt{z^2 + \sigma^2}$$
для малого σ . (8)

Основная цель такой регуляризации – учесть перекрытия и разрывы в потоке.

Однако робастные нормы лишь примерно интерполируют поток в области перекрытий, используя значения из соседних пикселов. Выбор подходящей нормы в слагаемом гладкости позволяет добиться правдоподобного профиля интерполяции для определенных классов объектов (например, для объектов с гладким контуром или объектов, выделяющихся по цвету – в этом случае норма также зависит от изображения I_0).

Некоторые методы поиска перекрытий помимо прямого потока вычисляют обратный поток V' от $I_I \ K I_0$ и сравнивают их, помечая пикселы $|V + V'| > \delta$ как перекрытия для некоторого фиксированного порога δ (обратный поток берется со знаком «+», т.к. он в сумме с прямым потоком в идеале должен давать 0), либо используют фиксированный штраф для перекрытых пикселов [13].

Иногда принимается во внимание пространственная разреженность карты перекрытий, например, путем фильтрации полученной бинарной карты [13].

Однако в силу неоднозначности потока возможны случаи, когда при похожих цветах объектов в изображениях слагаемое данных получается слабым и поток V, V' различаются лишь из-за регуляризации, которая оптимизируется независимо для прямого и обратного потока. Возможна формулировка совместной минимизации с общей регуляризацией, но она не улучшает ситуацию, т.к. результирующий функционал имеет много локальных минимумов.

Другая проблема – выбор порога отсечения перекрытий, т.к. количество перекрытых пикселов может существенно различаться в разных кадрах. Одним из решений является добавление в задачу неизвестной бинарной маски перекрытий и попиксельное умножение слагаемого данных E_D на эту маску. Такой подход приводит к тому, что глобальный минимум E достигается при отметке всех пикселов как перекрытых. Попытка выбора оптимального штрафа за избыток перекрытий равносильна проблеме поиска порога δ , т.е. не может быть решена сразу для всех кадров.

В данной статье рассматривается возможность уточнения слагаемого данных за счет использования соседних кадров с явным вычислением карты видимости. ³Наш подход основан на представлении многокадрового потока в виде траекторий [12] и идее моделирования перекрытий с помощью сортирующего суммирования, применяемой в алгоритмах многоракурсного стереосопоставления [9], [5].

2. ПРЕДЛАГАЕМЫЙ ПОДХОД

Вместо пространственной разреженности перекрытий, применяемой в двухкадровых алгоритмах оптического потока [13], сосредоточимся на их временной разреженности. Временная разреженность означает, что каждая точка сцены попадает в перекрытие не слишком часто. Это условие является более естественным, чем пространственная разреженность в отдельно взятом кадре, т.к. нельзя заранее сказать, сколько точек в кадре перекрыто, в то время как частоту перекрытий во времени можно примерно оценить снизу.

Рисунок 1. Искусственные примеры. Исходные одномерные видеопоследовательности (T = 9 кадров, по вертикали – ось времени) и найденные траектории. Толстые части траекторий – диапазоны видимости.

Предположим, что каждая точка в изображении I_0 видима хотя бы на протяжении 5 кадров. Тогда, рассматривая 9 последовательных изображений I_{-4} , ..., I_4 можно ввести переменную, отвечающую за перекрытие $\rho \in \{0, 1, 2, 3, 4\}$.

При этом $\rho = 0$ означает, что данный пиксел является видимым в кадрах $I_{-4}, ..., I_0, \rho = 1 - в$ кадрах $I_{-3}, ..., I_1$ и т.д., $\rho = 4 - в$ кадрах $I_0, ..., I_4$. Обратим внимание, что в такой формулировке пиксел всегда виден в центральном кадре I_0 . Карта видимости ρ по координатам (x, y) соответствует именно этому кадру (в то время как координаты пиксела в других кадрах зависят от потока между I_0 и данным кадром).

В общем случае мы рассматриваем произвольное нечетное число кадров $T \ge 3$. Для обозначения диапазона индексов введем значение $K = \frac{T-1}{2}$. Пиксел является видимым по

меньшей мере в K+1 изображении из T изображений I_{-K} , ..., I_K . Карта видимости: $\rho \in \{0, ..., K\}$, пиксел является видимым в кадрах $\rho - K$, ..., K. Пример траекторного потока приведен на рис. 1.

Заметим, что в такой формулировке не ставится вопрос о наличии или отсутствии перекрытия в каком-либо пикселе какого-либо кадра, поэтому не придется выбирать функцию штрафа за чрезмерные перекрытия. Мы лишь выбираем набор из K+1 последовательных кадров, в которых пиксел точно является видимым (видимость в остальных K кадрах может быть произвольной).

Для работы с пикселами в такой формулировке нам потребуется T - I (или, что то же самое, 2K) двухмерных оптических потоков – из кадра I_0 в каждый из остальных кадров. Обозначим эти потоки как V_{-K} , ..., V_{-I} , V_1 , ..., V_K . Если бы они были последовательными ($I_1 \rightarrow I_2$, $I_2 \rightarrow I_3$ и т.д.), для вычисления позиции пиксела требовалось бы интегрирование нескольких потоков, что сильно усложняет формулировку и снижает точность из-за погрешностей интерполяции. Поэтому поток V_k отвечает за трансформацию между кадрами $I_0 \rightarrow I_k$, k = -K, ..., -I, I, ..., K.

Выходным результатом алгоритма считается поток V_I , и, если нужно, обратный поток в предыдущий кадр V_{-I} .

Т.к. потоки вычисляются относительно кадра I_0 , их можно считать одним «траекторным» потоком, где каждому пикселу сопоставлен 4*K*-мерный (или, что то же самое, 2(T - I)-мерный) вектор потока

Остальные потоки являются лишь вспомогательными для угочнения перекрытий. Также для выходных потоков можно вычислить бинарную маску перекрытий как $[\rho = 0]$ и $[\rho = K]$ соответственно (т.е. случаи, когда не виден кадр I_I и I_{-I} соответственно). Квадратными скобками обозначена

Young Scientists School

$$\vec{V} = \left(V_{-K,x}, V_{-K,y}, \dots, V_{-1,x}, V_{-1,y}, V_{1,x}, V_{1,y}, \dots, V_{K,x}, V_{K,y}\right)$$
(9)

Такое векторное представление позволяет использовать любые известные функционалы гладкости, определенные для двухмерного потока, которые могут быть сформулированы в терминах векторной алгебры, а также многие алгоритмы минимизации данных функционалов. Исключением будут алгоритмы, явно использующие факт двухмерности, а также алгоритмы, несовместимые с членом данных E_D , который будет сформулирован в следующем разделе (однако их часто можно адаптировать для данной задачи, либо использовать методы раздельной оптимизации, используя другой алгоритм для члена данных). Кроме того, стохастические и переборные алгоритмы могут потерять свою эффективность из-за увеличения пространства поиска.

2.1 Функционал энергии

индикаторная функция.

Задача поиска траекторного потока может быть сформулирована как задача минимизации функционала энергии

$$E(V,\rho) = E_D(V,\rho) + \lambda E_S(V) + \mu E_T(V) + \nu E_\rho(\rho)$$
(10)

где E_D – член данных, E_S – член пространственной гладкости потока, E_T – член временной гладкости потока, E_ρ – член гладкости карты видимости, λ , μ , ν – веса слагаемых.

$$E_{D}(V,\rho) = \frac{1}{K} \sum_{x} \sum_{y} \sum_{y} \sum_{t=\rho(x,y) \in K, \\ t \neq 0} (I_{0}(x,y) - I_{t}(x + V_{t,x}, y + V_{t,y}))^{2}$$
(11)

В этом члене не используется робастная норма (8) или аналогичная, как в формуле (6), т.к. за перекрытия явно определяются значением ρ , и цвета не перекрытых пикселов должны совпадать с высокой точностью.

Член пространственной гладкости соответствует случаю двухкадрового потока (7) с некоторыми модификациями:

$$E_{S}(V) = \frac{1}{T-1} \sum_{x} \sum_{y} \left[\sum_{\substack{t=-K, \\ t \neq 0}}^{K} \left(\frac{\nabla V}{|t|} \right)^{2} \right]^{T}$$
(12)

В качестве робастной нормы взята функция, инвариантная к повороту. Степень $\gamma = 0,5$ соответствует робастной норме L_1 , инвариантной к повороту, которая определяется как

$$\psi(V) = \sqrt{\left(\frac{\partial V_x}{\partial x}\right)^2 + \left(\frac{\partial V_x}{\partial y}\right)^2 + \left(\frac{\partial V_y}{\partial x}\right)^2 + \left(\frac{\partial V_y}{\partial y}\right)^2}, \quad (13)$$

причем в нашем случае суммирование по *t* также производится под знаком радикала. Это означает, что в случае разрывности решения разрыв потока в некоторой точке происходит одновременно в горизонтальной и вертикальной компонентах потока и сразу во всех кадрах. Таким образом, траектории в двух соседних пикселах не могут разойтись, а через несколько кадров слиться в единый объект.

На практике мы используем значение $\gamma = 0,45$, как рекомендовано в статье [10], порождающее невыпуклую норму, которая «поощряет» более четкие края в случае разрывного потока.

Деление на |t| в формуле (12) уравнивает разброс значений по разным кадрам, т.к. он возрастает при удалении от центрального кадра.

Энергия временной гладкости использует вторую производную потока по времени, т.е. поощряет траектории, близкие к линейным:

$$E_T(V) = \frac{1}{T-2} \sum_{x} \sum_{y} \sum_{t=-K+1}^{K-1} (V_{t-1} - 2V_t + V_{t+1})^2, \qquad (14)$$

при этом полагается $V_0 = 0$.

Коэффициенты 1 / K, 1 / (T - 1), 1 / (T - 2) в формулах (11), (12), (14) соответствуют количеству слагаемых на пиксел, зависящему от числа рассматриваемых кадров T, что упрощает подгонку коэффициентов λ , μ , ν при изменении числа кадров.

Функционал гладкости карты видимости также является квадратичным:

$$E_{\rho}(\rho) = \sum_{x} \sum_{y} (\nabla \rho(x, y))^{2}$$
⁽¹⁵⁾

При этом градиент означает конечную разность ввиду дискретности значений ρ . Выбор квадратичной функции штрафа обусловлен структурой перекрытий в видео: движущийся объект оставляет за собой «след» из перекрытий, каждое из которых сдвинуто на 1 кадр относительно предыдущего. Скачки в карте видимости, превышающие 1 кадр, чаще всего соответствуют неправильно найденным перекрытиям. Надежными перекрытиями являются такие, которые последовательно возникают по пути движения объекта, поэтому имеет смысл искать перекрытия именно с такой структурой.

Также можно ввести два дополнительных члена, связанных с картой видимости.

Первый член запрещает выход видимой части траектории за края изображения, т.к. обращает энергию в бесконечность. Таким образом, данная ситуация рассматривается как обычное перекрытие, в отличие от алгоритмов двухкадрового потока, где такие случаи приходится обрабатывать отдельно, чаще всего обнулением производных для векторов потока, выходящих за края изображения.

Второй дополнительный член поощряет, с очень маленьким весом, близость ρ к значению K / 2, т.е. симметрию диапазона видимости. Такая регуляризация улучшает маску видимости для выходного потока V_1 , т.к. иначе в простых случаях при отсутствии перекрытий может быть выбран диапазон видимости -K, ..., θ и выходной поток будет менее информативным.

3. МИНИМИЗАЦИЯ

В данном разделе приводится предлагаемый алгоритм минимизации полного функционала энергии (10). Важным аспектом является совместная минимизация по потоку и карте видимости. При поочередной минимизации возможны локальные минимумы [11].

Рисунок 2. Структура графа, позволяющая описать функционал энергии (10) в виде суммы унарных и парных потенциалов на двух двухмерных сетках (для \vec{V} и ρ).

Идея алгоритма заключается в использовании метода QPBO [8], минимизирующего энергию для бинарных задач, и алгоритма слияния [6], использующего QPBO для последовательной склейки решений-кандидатов для небинарных задач. При этом сама задача склейки является бинарной.

Будем осуществлять минимизацию на двухмерной сетке, соответствующей изображению I_0 . Каждому узлу сетки соответствует вектор потока \vec{v} (см. обозначение (9)) и значение ρ . Можно строить решения-кандидаты, состоящие из пар (\vec{v}, ρ) , но можно сделать их независимыми, разместив их на двух сетках (рис. 2).

Первая сетка содержит пространственные ребра, отвечающие за слагаемое E_S . Узлы содержат унарный потенциал E_T . Ребра второй сетки отвечают за слагаемое E_{ρ} . Ребра, соединяющие соответственные узлы первой и второй сеток, отвечают за слагаемое E_D .

Инвариантные к повороту нормы не могут быть заданы с помощью ребер двухмерной сетки, поэтому используется аппроксимация – каждая вершина соединяется не с 4, а с 16 ближайшими [3].

3.1 Начальное приближение

В качестве начального приближения вычислим двухкадровые потоки между последовательными кадрами в прямом и обратном направлении от центрального кадра: $I_0 \rightarrow I_1$, $I_1 \rightarrow I_2$, ...; $I_0 \rightarrow I_{-1}$, $I_{-1} \rightarrow I_{-2}$, ... Затем выполним рекурсивную трансформацию этих потоков, чтобы получить потоки между центральным кадром и остальными кадрами. Для вычисления двухкадровых потоков использовалась библиотека mexOpticalFlow [7].

3.2 Решения-кандидаты

Будем генерировать решения-кандидаты, используя несколько различных эвристик, и сливать их с текущим решением методом QPBO. Алгоритма слияния [6] гарантирует невозрастание энергии, что снижает требования к решениям-кандидатам.

Решения-кандидаты для траекторного потока V:

- 1. Всевозможные сдвиги всей сетки на ± 1 пиксел по каждой оси (т.е. значение потока \vec{V} копируется из соседнего пиксела, компоненты вектора при этом не меняются)
- 2. Выбор траектории \vec{V} в случайном пикселе (x, y) и использование его в качестве константного кандидата. Т.к. сцены часто состоят из нескольких объектов,

вместо равномерного распределения для (x, y) сначала осуществляется сегментация потока методом «k средних», затем случайно выбирается сегмент, а в нем – случайный пиксел. Это нужно, чтобы объекты большей площади не имели преимущества.

- 3. Двухмерное гауссово размытие потока \vec{V}
- Один шаг градиентного спуска для слагаемых, отвечающих за данные на двухмерной сетке (т.е. без учета пространственной гладкости): E_D(V, ρ) + μE_T(V)
- 5. Попиксельная минимизация $E_D(V, \rho) + \mu E_T(V)$ по \vec{V} методом динамического программирования. Используется ускоренный приближенный вариант, основанный на идее алгоритма PatchMatch [2].

Как видно, часть решений-кандидатов соответствует копированию «удачных» траекторий \vec{V} из одних пикселей в другие, другая часть генерирует новые решения в окрестности текущего решения.

Кандидаты для карты видимости являются константами $\rho = 0, ..., K$ (также были опробованы сдвиги и увеличение/уменьшение ρ на 1, но эти варианты не дают существенного улучшения по сравнению с использованием констант).

Кандидаты для всех переменных (\vec{V}, ρ) строятся в виде декартова произведения описанных кандидатов (для каждого кандидата \vec{V} пробуем каждый кандидат ρ). Т.к. кандидаты зависят от текущего решения, цикл оптимизации надо повторять до тех пор, пока полная энергия не перестанет уменьшаться.

3.3 Иерархический подход

Аналогично двухмерным методам оптического потока, возможно применение иерархического подхода с уменьшением размера всех кадров до небольшого размера (например, 40х30 пикселей), а затем поэтапным увеличением до исходного размера ([10], [7]). При этом, после каждого уровня иерархии можно выполнить дополнительное слияние: решение с предыдущего уровня плюс двухмерный поток для данного разрешения, преобразованный в траектории (как описано в разделе 3.1).

4. РЕЗУЛЬТАТЫ

Пример результата работы алгоритма приведен на рис. 3. По сравнению с результатом алгоритма [7] контур объекта более точный и не содержит гладких переходов между объектом и фоном, которые видны в виде белой окантовки на рис. 3 (г). Это достигается за счет построения карты видимости и совместной оптимизации видимости и потока.

5. ЗАКЛЮЧЕНИЕ

В статье предложен алгоритм вычисления оптического потока на основе траекторий, дающий стабильный результат при наличии перекрытий за счет использования нескольких последовательных кадров. В дальнейшем планируется провести подробное экспериментальное сравнение метода с аналогами и получить численные оценки

6. БЛАГОДАРНОСТИ

Работа выполнена при поддержке проекта МРЛ-2010-050 с компанией Microsoft Research.

Рисунок 3. Пример результата. (а) изображение I_0 из тестовой базы [1], T = 7 кадров, (б) поток V_1 , (в) увеличенный фрагмент, выделенный рамкой в (б), (г) результат алгоритма [7], (д) цветовая карта обозначения потока, предложенная в статье [1].

7. ССЫЛКИ

[1] Baker S., Scharstein D., Lewis J., Roth S., Black M., Szeliski R., *A database and evaluation methodology for optical flow*, IJCV, 92(1):1–31, 2011.

[2] Barnes C., Shechtman E., Finkelstein A., Goldman D., *PatchMatch: a randomized correspondence algorithm for structural image editing*, SIGGRAPH 2009

[3] Boykov Y., Kolmogorov V., Computing geodesics and minimal surfaces via graph cuts, ICCV 2003

[4] Horn B., Schunck B., *Determining optical flow*, Artificial Intelligence, vol 17, pp 185–203, 1981

[5] Kang S., Szeliski R., *Extracting view-dependent depth maps from a collection of images*, International Journal of Computer Vision (IJCV), vol. 58, number 2, pp. 139–163, 2004

[6] Lempitsky V., Roth S., Rother C., *FusionFlow: discretecontinuous optimization for optical flow estimation*, CVPR 2008

[7] Liu C., *Beyond pixels: exploring new representations and applications for motion analysis*, Doctoral Thesis. Massachusetts Institute of Technology, 2009

[8] Rother C., Kolmogorov V., Lempitsky V., Szummer M., *Optimizing binary MRFs via extended roof duality*, CVPR 2007

[9] Satoh K., Ohta Y., Occlusion detectable stereo – systematic comparison of detection algorithms, ICPR 1996

[10] Sun D., Roth S., Black M., Secrets of optical flow estimation and their principles, CVPR 2010

[11] Sun D., Sudderth E., Black M., Layered segmentation and optical flow estimation over time, to appear: CVPR 2012

[12] Volz S., Bruhn A., Valgaerts L., Zimmer H., *Modeling* temporal coherence for optical flow, ICCV 2011

[13] Xiao J., Cheng H., Sawhney H., Rao C., Isnardi M., *Bilateral filtering-based optical flow estimation with occlusion detection*, ECCV 2006